Multithreading for Linear Algebra in
Distributed Memory Environments

Parry Husbands

Interactive Supercomputing
[Joint work with Esmond Ng (LBNL) and Katherine Yelick (LBNL/UCB)]

Our Road to Multithreading

* Distributed Memory programming challenges
= Expressibility
* Many algorithmic constructs tortuous to implement
* Performance
* Synchronous codes spend an excessive amount of time waiting
= Asynchronous memory operations boost performance
* Modern out-of-order processors

= MPI_TIsend()/MPI_Irecv()

* How do we organize programs with many outstanding requests?

* Threads have a natural latency tolerance for both algorithmic and
communication latencies

* Write distributed memory code in a multithreaded stylel

LU Factorization with Partial Pivoting

* A simple but heavily used computational kernel.

* Available in Linpack/LAPACK/ScalL APACK.

* LAPACK/ScaLAPACK are the second top mathematical libraries at
the National Energy Research Scientific Computing Center, a
national high performance computing facility funded by the Office
of Science in the U.S. Department of Energy.

= HPL benchmark.
* Highly tuned parallel block LU factorization with partial pivoting.

LU Factorization with Partial Pivoting (2)

for i=1:n-1
swap rows so |a(i,i)| = max{abs(a(:,i))} 1 i n

for j=i+lin
1G3.) = a(j.i)/a(i.i)
for j=iin
u(i.j)=a(i.j)
for j=i+lin

for k=i+1l:n
a(j.k) = a(j.k)-1(j.i)*u(i k)

Select pivots 4/ Update this

from this portion of
column the matrix

4

Parallel Tasks in LU

b [
(1]

some edges omitted
' |

* Panel Factorizations (parallel recursive formulation used)
= Pivot application and update to U
* Trailing matrix updates

Distributed Memory Multithreading with UPC

= Co-operative multi-threading used to mask latency and to mask
dependence delays (home-grown package)

= Non-blocking (remote get) transfers to mask communication latency

* Remote enqueue used to spawn remote threads. Threads are placed to
take advantage of locality

* Matrix blocks distributed in 2-d block-cyclic manner (fixed layout) and
tuned for block size
* Three levels of threads:
= UPC threads (data layout, each runs an event scheduling loop)
* Multithreaded BLAS (boost efficiency)
= User level (non-preemptive) threads with explicit yield
* Operations “fire" when dependencies are satisfied (use a per proc.

scoreboard). "Lookahead" is therefore dynamic (as in many shared
mem. codes)

The Threads

= Co-operative threads

* Remove need to maintain integrity of data structures throughout
program

* Experimented with GNU Pth, POSTIX Threads,
Hand rolled user-level threads for portability
= Uses only function calls and returns (fast context switches)
* "Interesting” use of Duff's Device
* Macros: PTP_SPAWN, PTP_FUNCALL, PTP_YIELD,

PTP_START, PTP_END
= Suspend, resume, priorities
= Custom script expands, computes jumps, rewrites local (stack) accesses,
creates functions for arguments, etc.

= Allows for many threads to be created/destroyed per processor

Utilization Comparison

Time (sec)

IR 1N m |
] N m i
N I |
] | H o1
I W m i
| (IR (et TR TR

Time (sec)

Il I N BN NN BN ENEEEEN R
. B EEE BEEN RRNRRARTTHT
8
Z
2
. HE AN EREN AR NRRTEmmm
- M NN NN R ERE T
e 1 1 N L LD T
00 10 20 30 40 650 80 70 20 [0

Synchronous (above)
vs. asynchronous (below)
schedule

SGT Altix Ttanium 2
1.4GHz, n=12,800,
process grid = 2x4, block
size = 400

Grey blocks = matrix
multiplication

Black blocks = panel
factorization

UPC HP Linpack Performance

Linpack Performance

1400
1200
1000
800
600
400 -
200 -

m HPL/MPI
m UPC

GFlop/s

X1/64 X1/128 Opt/64 Alt/32
machine / # Procs

*Faster than ScaLAPACK (less synchronization), comparable to MPI/HPL

*Large scaling of UPC code on Itanium/Quadrics (Thunder)
= 2.2 TFlops on 512p and 4.4 TFlops on 1024p

= 91.8% of peak on 1p Itanium 2 15GHz, 819% on 1p Opteron 2 2GHz

Scheduling: The Major Issue

= Critical operation: Panel Factorization
* need to satisfy its dependencies first
= perform trailing matrix updates with low block numbers first
= Use a Priority Queue to schedule these

* panel factorizations started as soon as blocks of next panel are
ready

* Theoretical and practical problem: Memory utilization

* Not enough memory for all tasks at once. (Each update needs two
temporary blocks, one from L, one from U)
= If updates are scheduled too soon, you will run out of memory

* Allocate memory in increasing order of factorization and don't skip
any!
* Thread blocks until enough memory available

* Cache performance: Too many dgemms to worry about the cache

Sparse Matrix Factorization

200

400

GO0

Gl

1000

1200

1400

1600

1600
0

1
1000
hz = 63454

200

4010

GO0

aan

1000

1200

1400

1600

1600
0

|
aln 1o0o
hz = 216058

1

Sparse Matrix Factorization

= Same basic algorithms used ...
but

= For efficiency we must take
care to avoid operating on as
many zero elements as possible

* Many variants due to symmetry,
different orderings of basic
factorization loop (left-looking,
right-looking, multifrontal)

* High degree of parallelism (due
to sparsity), but finer-grained
(due to fewer nonzero elements,

200 +

400

GO0

a00

1000 -

1200 ¢

1400

1600

1500 k

TL, . |
g +
| - =
P Pal o
Md [1]
1

o

~-allll
r=—us
2

1
0 200 1000
hz = 105947

1
1500

Sparse Cholesky Factorization

* Based on left-looking, blocked serial code of Ng and Peyton

= Choice of blocks to enhance performance via level-3 BLAS
operations

* Block columns receive updates from earlier block columns
= After all updates are received, a block column is factorized

= Complications
= Dependency graph
= Scoreboard no longer simple

* How do we choose the "best" operation to perform?
= Longest path in chain of dependencies?
= Weight this by amount of work?

13

Our Multithreaded Implementation

= Strategy

= Use analysis to figure out dependencies and importance of each
update

= Threads for block column-block column updates
= Set thread priorities based on importance

Critical operations scheduled based on dependency graph
Memory utilization controlled by performing critical ops first.
Cache: What's a good schedule for this?

14

Preliminary Cholesky Performance

Results obtained in SGI Altix (1.4GHz Itanium 2)
Performance in seconds

bmw7st_1 |bmwcra_1l bmw3_2

n 141,347 148,770 227,362

nnz 3,740,507 5,396,386 5,757,996

1p 11.21 51.80 23.27

2p 6.97 30.00 12.69

4p 4.58 15.72 9.10

8p 2.73 8.52 5.31
sequential 7.21 34.61 15.59

= But... Ip performance not competitive with original serial
version! So back to the drawing board...

Conclusion and Open Questions

Portable addition of cooperative threads and remote function

invocation to UPC

High performance UPC version of Linpack Benchmark in ~5K
LOC

Sparse Cholesky still has issues

* Need more thinking about scheduling

Remember the scheduler's influence on
= Critical tasks

* Memory

= Cache

16

Extras

Asynchronous Implementations

O MPI

= Use non-blocking communication primitives
- MPI_ISend()/MPI_IRecv()/MPI_IBcast()

= Poll for incoming messages then perform work

O Multithreaded languages (PThreads, Cilk, ...)

= Use threads for each major operation

- Each thread is a computational task that shares the CPU with other
such tasks

= Thread synchronization primitives manage algorithm dependencies

* Give up the CPU (yield) to another thread when a long-latency network
call is made

- Suspend and resume other threads that may interfere with current
work

18

Parallel Performance

d SGI Altix

d 8 procs (2 x 4 grid, n = 25,600)
= ScaLAPACK (synchronous)
25.25 GFlop/s (best block size 64)

= UPC LU (asynchronous)
33.60 GFlop/s (best block size 256)

= 33% increase in performance
O 16 procs (4 x 4 grid, n = 32,000)

= ScaLAPACK (synchronous)
43.34 GFlop/s (block size 64)

= UPC LU (asynchronous)
70.26 Gflop/s (block size 200)

= 620/0 lncre%

19

Communication Requirements

O Processors usually arranged in a 2D grid.

O Reductions (finding the maximum in a distributed column) for
pivot selection.

" A gather operation.
O Row Exchanges for application of pivot sequence.

O Row Broadcasts for
* Trailing matrix updates.
= Updates to U.

O Column Broadcasts for trailing matrix updates.

20

Some Open €S Issues

Future Investigations:
0 How do things change with pre-emptive threads?

O Can we get support for remote enqueue and spawning?

Q How to exert control over the local schedule in a principled
way?

d Deadlock avoidance in resource allocation?

21

HPL (Parallel Block LU Factorization)

Matrix decomposed
into blocks

Panel factorizations
involve communication
for pivoting

Finished part of U

Finished
par’r
of
L y
AGi) SAGK

Trailing matrix
To be updated

Blocks 2D
block-cyclic

distributed
» forload

balancing

Part of U to
be updated.

Matrix-
matrix

LI |

Panel being factored

multiplication
used here.
Can be coalesced

22

Synchronous vs. Asynchronous Codes

d Synchronous codes
" Pause other processors during panel factorization

= Wait until trailing matrix update is complete before starting next
factorization

" Less performance
= Easier to write

23

Synchronous vs. Asynchronous Codes

d Asynchronous codes
= Exploit overlap - do something useful while waiting for data
* Panel factorization can start as soon as data is ready

* Trailing matrix updates overlapped with factorizations and other
updates

= Peak performance
" Harder to write

= Networking technology, infrastructure not always there
J.B. White & S.W. Bova. "Where's the overlap?” (1999).

24

